Holo-box: Multi-Level Augmented Reality Glanceable
Interfaces for Machine Shop Guidance using Eye and Hand
Tracking Interactions

Grigorios Daskalogrigorakis

Masters Thesis
School of Electrical and Computer Engineering
Technical University of Crete
June 2022
Supervisor: Prof. Mania Katerina, Technical University of Crete
Committee: Assoc. Prof. McNamara Ann, Texas A&M University
Committee: Assoc. Prof. Samoladas Vasilis, Technical University of Crete

Abstract

In this work, we employ Serious Games and Augmented Reality as tools for manufacturing
training inside a machine shop. First, we analyze the progress of modern manufacturing
processes leading up to the 4th industrial revolution, commonly known as Industry 4.0. We
tackle shortcomings in relation to the use of simulations and Serious Games as training tools
as well as the use of Augmented Reality in manufacturing. Finally, we analyze Glanceable
Augmented Reality and its technical challenges.

In the first part of this work, we propose a gamified approach to visualising manufacturing
missions for the implementation of a Serious Game focused on G-code programming for milling
and turning missions for undergraduate students as a standalone training system without the
need of a supervisor. Our gamified manufacturing mission design was also translated for use
through AR inside the real world machine shop.

Glanceable User Interfaces for Augmented Reality (AR) reveal virtual content ”at a glance”
to provide rapid information retrieval, often based on gaze interaction. They are ideal when
the augmented content covers a small proportion of the view space, but when the size of virtual
content grows, the potential to occlude the real-world increases provoking safety concerns.

In this work, we present Holo-Boz, a novel interaction system for AR combining Glanceable
interfaces and world-based 3D interfaces across three Levels-Of-Detail, including progressively
more information and visuals. Holo-box uses a combination of eye-gaze and hand interactions,
focusing on user safety. A 2D Glanceable interface facilitates rapid information retrieval at a
glance, while extended 3D interfaces provide interaction with denser content and 3D objects.
Holo-Box couples blink-based and gaze-based interactions to minimize errors arising from the
Midas Touch Problem. While applicable across domains, the Holo-Box interface is designed
and optimized for performing manufacturing tasks in the real world. We evaluated the Holo-
Box interface using an object selection task of a manufacturing process. Participants completed
subsequent tasks faster using Holo-Box, employing incrementally smaller LOD interfaces over
time. The perceived accuracy of Holo-Box gaze-based inputs was high, even when the device’s
eye tracker accuracy was coarse.

1 Introduction

Training new personnel for manufacturing is often a tedious operation. Practice under real-world
machinery is expensive, consuming vital system’s resources and, in some cases, dangerous for the
trainee [4]. G-code programs guide the machining process, written in a computer or machine
controller and loaded to a machine. A safer alternative for training uses simulated factories or
training environments. The concept of a digital factory can be defined as an interactive 3D en-
vironment supporting modeling, communications and operation of manufacturing [5]. Previous
studies indicate that virtual training is effective as the trainee is guided through complex product
manufacturing [6], [7]. While there are plenty of gamified virtual simulations that aid in manufac-
turing training and mainly focus on safety tasks [8] or manual operation [9], the task of creating
a serious game focused on writing G-code is technically challenging. Potential trainees often have
no previous programming knowledge. It is significant that they learn how to write efficient G-code
programs, not just correct ones.

Augmented Reality (AR) provides an enhanced vision of the world by seamlessly integrat-
ing virtual computer-generated elements with real-world environments [10]. AR applications are
prominent in complex, innovative workplaces. The manufacturing floors of modern machine shops
are increasingly employing AR technology as the evolution of the industry moves towards the in-
dustry 4.0 model [11]. A limiting factor of AR Head-Mounted Displays (HMDs) stems from the
narrow Field of View (FoV) available in current hardware. This narrow FoV restricts the amount
of virtual content that can be viewed at one time which, in turn, occludes real-world elements,
critical to the task at hand or the user’s safety.

Workers employ AR to safely retrieve virtual information at any point eliminating the dis-
traction and spatial limitations of traditional 2D screens[12]. AR applications need compelling,
intuitive interfaces that do not impede or endanger the user to be effective in this space [13]. One
approach is to use Glanceable User Interfaces that can retrieve information ”at a glance” based on
gaze detection when using an AR, HMD with integrated eye-tracking [14]. Glanceable interfaces
prove helpful in cases when the user is focused on a real-world task that directly requires keen at-
tention, providing appropriate guidance without obstruction [15]. Glanceable interfaces are quick
and convenient, but they suffer from three main drawbacks: (1) Limited Scalability: As the amount
of AR content increases, Glanceable interfaces lose effectiveness due to the volume of data to be
displayed and the potential to block real-world content [14][16]. (2) Viewing Angle: Problems can
arise when viewing augmented content at an angle [17]. (3) Unintentional selection/interactions
using gaze: This is the Midas Touch Problem (MTP) [18].

A Glanceable interface should be compact, enabling minimal information at a glance to avoid
clutter, occlusion, and distraction [3]. When a large amount of data is necessary to guide the user
through the task, AR elements occupy a large portion of the available visible space. Interactions
with virtual content become less accurate and in workplaces such as machine shops, obstruction of
the visual field is dangerous. Voice and gesture commands have been offered as an alternative to
visual instruction. In a machine shop, however, AR interaction based on speech is not well-suited
due to the high levels of noise, while mid-air hand gestures and wide controller motions can pose
safety concerns [19)].

In the first part of our work, we present an innovative desktop-based CNC machining training
procedure, created as a serious game for CNC manufacturing training. The proposed serious game
prepares the trainee in writing G-code and setting up virtual machines for completing milling and
turning tasks. The serious game works as a standalone training system without the need for a
supervisor or trainer to be present. The serious fame is focused on G-code training and basic ma-
chine setup as communicated by an engaging 3D environment and a streamlined training process.
The serious game was developed in collaboration with the Micromachining and Manufacturing
Modeling Lab (M3 lab) of the School of Production Engineering an Management of the Technical
University of Crete. Technical development of the Serious game was accomplished by Grigorios
Daskalogrigorakis and Salva Kirakosian. The M3 lab provided the 3D object models, 2D documen-
tation in addition to theoretical guidance regarding manufacturing processes and manufacturing
education. Salva Kirakosian was responsible for 2D and 3D design for the 3D virtual machine
shop, while Grigorios Daskalogrigorakis was the gameplay designer and developer regarding the
Gamification of the manufacturing process.

In the second part, we present Holo-box, a novel AR interface that combines Glanceable AR
and world-based 3D interfaces employing a combination of eye-gaze and hand interactions. We

evaluate this in a machine shop taking workplace safety considerations into account, boosting
productivity and accuracy in a manufacturing process. Holo-box utilizes a 3-Level-of-Detail (3-
LOD) architecture providing varying levels of information to the user while performing tasks in the
machine shop. Levels can be expanded at will, through glance, to reveal additional information
(see Fig. 1). The Glanceable interfaces enable rapid information retrieval with minimal real-
world occlusion. Incorporating an AR 3D interface enabled with hand-tracking allows for complex,
accurate interactions in a controlled environment. Holo-box uses custom eye interaction logic to
automate accurate and natural direct eye interaction through blinking. The interface is deliberately
designed to accurately decode gaze, even when the accuracy of the eye tracker is low.

=m=8

[S Y p—

Object Size: 150x100 mm
Material: Aluminum
New Mission B3 + Carving Depth: 5Smm

fr— Manufacturing Tool: Tuberous
*A" Plaue, Aluminum R 100 010
) [>}

Figure 1: The proposed 3-LOD AR interface system.

Our work has the following contributions:

e We present Holo-Box, a novel 3-LOD interface system for AR combining both Glanceable
and 3D interfaces [3]. Two initial LOD interfaces are controlled through glance (Glanceable
interfaces), while the deepest level of LOD is a 3D world-based interface. The interface
enables the user to view simple guidance information through the Glanceable interfaces or
select to view the 3D interface to examine more detailed information.

e Holo-Box utilises a novel interaction system that utilizes a combination of eye-gaze blinking
with a delay (dubbed blink-delay) for interacting with Glanceable interfaces to minimize
unintended interactions. Objects remain selected and interactable even if the eye cursor exits
their activation trigger unless another interactable object is selected. Glanceable interfaces
are also visually adjusted to minimize errors in interaction, deliberately placing buttons on
opposite sides of the interface. The 3D interfaces also allow hand tracking interactions with a
delay (dubbed hand-delay). Users can engage interchangeably between hand-delay and blink-
delay interactions; thus, interactable objects can be placed on any layout without restrictions

[1].

e In the Machine shop Serious Game, we present a streamlined gamified presentation for man-
ufacturing missions for milling and turning tasks [2]. The Serious Game was used for G-code
education and received positive feedback from students. In addition, our proposed gamified
presentation was adapted to AR for use in Holo-box to provide feedback on the real world [3].
The content shown in each LOD is adjusted so that each interface can be used to guide users
with different levels of knowledge on its own. In the most compact Glanceable interface,
we show only textual information, including the name and material of a given task. The
second LOD level of the Glanceable interface offers additional text and 2D images. The sub-
sequent 3D interface includes 3D objects and multiple interactable buttons. The Glanceable
interfaces provide adequate guidance for experienced users, while the 3D interface provides
additional information for inexperienced users, using 3D models relevant, in our case, to
manufacturing tasks.

o We evaluated our work in Holo-box two times. In our first evaluation we found the issues of
Holo-box and the limitations of our hardware and tracking, which were corrected for our final
implementation [3]. In our second evaluation, we evaluate Holo-box by employing an object
selection task in a pilot manufacturing scenario. The content displayed on all interfaces is
used in presenting milling and turning manufacturing tasks in the form of gamified missions.
Experiment results show that users complete missions faster and use more compact interfaces
as they gain more experience. Our proposed interaction system compensates for the eye

tracker’s inaccuracies resulting in higher perceived accuracy on blink-delay inputs than hand-
delay.

Chapter 2 includes a low level analysis of Augmented reality including theoretical knowledge,
analysis of the most well known AR Head-Mounted Displays (HMDs) and the various ways to
develop AR applications. In addition, chapter 2 also includes a brief analysis of real world Ma-
chine shop manufacturing, the new Industry 4.0 model and the necessity in including AR into the
manufacturing workspace.

Chapter 3 provides an analysis of previous work including the use of gamified environments
in education and/or training and the use of virtual environments and AR in workspace educa-
tion. Chapter 3 also covers related work regarding AR interface types used in multiple scenarios,
including adaptive and Glanceable interfaces.

Chapter 4 covers the implementation of a Serious Game for manufacturing education in which
we designed a gamified environment for machine shop education, which served as the core of our
AR application. The Serious Game was developed for remote G-code education, without the need
for a supervisor. In this game, we designed a gamified manufacturing mission presentation, which
was also adapted for use in the real world using AR.

Chapter 5 covers the first part of our AR implementation which includes our proposed 3-LOD
interface system. In this chapter, we discovered the issues and limitations of our first attempt, and
we analyze the way to overcome them.

Chapter 6 covers the full implementation of our work, which extends the previous chapter and
solves the issues present in the prototype with Chapter 7 analysing our work in a low level inside
the Unity Engine. Chapter 8 covers the user study used to evaluate our work.

5 Holo-Box: Level-of-Detail Glanceable Interfaces for Aug-
mented Reality

In this chapter we analyze the initial implementation of our work. The main motivation for this
work was to combine the gamified mission format presented in G-code Machina [2] with Glanceable
AR interfaces [14] in order to provide realtime guidance inside the manufacturing workspace using
AR in a streamlined gamified manner.

Although this work had positive feedback when published [3] its usability was limited by issues
regarding the Magic Leap’s eye tracking accuracy. These issues were identified and corrected during
the course of this work for the final implementation.

5.1 3-LOD architecture

Holo-box employs a three Level of Detail (LOD) interface combination, with each LOD revealing
varying levels of information with varying levels of real world occlusion. Two of the three LODs
are 2D display-fixed interfaces which are always visible at a fixed position of the user’s visual field
and use eye tracking for interactions with virtual objects. The third interface is a 3D world-based
interface which receives hand-based inputs instead.

Figure 75: Holo-Box’s 3 Levels of Detail interfaces shown in the context of a machine shop. (left)
Simple Glanceable. (middle) Detailed Glanceable. (right) Holo-Box.

Initially, the user is presented with the first LOD interface and the usability of the 3-LOD
system is as follows:

Level 1: Simple Glanceable interfaces (SG) (Fig.75 left), are visible by default while the
user is focused on the real world, are compact and semi-transparent. Their purpose is to alert users
to changes of the virtual content. Interaction is initiated by gaze-activated virtual buttons, using a
small gaze-dwell delay. This short gaze-dwell initiates a transition to a Detailed Glanceable (DG)
interface.

Level 2: Detailed Glanceable interfaces (DG) (Fig.75 center), provide more complex in-
formation compared to SG Uls such as lines of text or images. DG Uls are less transparent than
SG. DG elements do not cover the entire FoV allowing for real-world spatial awareness. Using
gaze-dwell as input, the user can revert back to the SG interface or progress to the more detailed
Holo-box mode.

Level 3: Holo-boxes (HB) (Fig.75 right), are 3D interfaces summoned at will or established
at predetermined locations. The HB is an isolated space where the user can freely interact with
virtual content using direct input without environmental occlusion or safety hazards. HB interfaces
include both 2D and 3D content scaled to the size of the HB itself and to the user’s available space.

5.2 Machine Shop context

Holo-box is applied in the context of a machine shop. Users wear a Magic Leap while operating
milling or turning machinery accessing virtual content through the Holo-box’s Ul. Augmented
content may vary from notifications to visualizing complex 3D objects for manufacturing. Virtual
interfaces use the presented three-tier non-intrusive LOD architecture while the user’s focus is on
the real world. Milling and turning tasks are presented gamified as ”missions” consisting of a 3D
or 2D object representation to manufacture as well as a textual description of the manufacturing

64

process [2]. By using Holo-box’s architecture, missions are presented in a gamified manner as

follows:

Figure 76: Simple Glanceable prototype

Level 1: SG (see Fig. 76) Notification that a new mission is available which may pop up at
any time while the user is working. The ”eye” button transitions to the DG interface.

Messae'

Greg:Good morning!
Greg: | sent you a new
assignemt. Check your

inbox.
Open in Hol

Figure 77: Detailed Glanceable prototype

Level 2: DG (see Fig. 77) Simple textual description of the mission, which is shown after
pressing a button on the SG interface. The placeholder text will be replaced by a textual description
of the given task. The "eye” button transitions to the HB interface. The ”X” button reverts to

the SG interface.

65

Figure 78: Holo-Box prototype

Level 3: HB (see Fig. 78) Detailed textual description of the request and an interactable 3D
model of the requested object to manufacture, shown on demand after pressing a button on the
DG interface at a Holo-box placed on the 3D space. The placeholder text is the same as the DG
interface. By interacting with the 3D object by hovering their index finger over the 3D model the
user can view additional information including measurements of the finished product as seen in
the mechanical blueprint of the object (see Fig. 61).

5.3 Issues and limitations

During the implementation of this prototype we found certain issues or limitations in our proposed
interface system, which we aimed to resolve during the course of our final implementation. These
issues included the following:

Inaccurate eye tracking. For our implementation we utilised the Magic Leap One’s on
board eye tracker. The eye tracker calculates an estimated fixation point in 3D space, based on
triangulating both eyes according to the Magic Leap’s initial calibration data, in addition to a
confidence value that grades the accuracy of the readings. In Unity, the fixation point is shown
as a 3D point in space which changes values only when a new fixation point is calculated with a
high confidence value, otherwise the fixation point remains stationary on its previous value. We
translated this 3D point into a 2D cursor which only moved horizontally and vertically towards the
fixation point and interacted with objects behind it regardless of depth. In addition, the cursor’s
movement was smoothed to follow the fixation point at a fixed speed in order to avoid sudden
jumps and rapid flickering (as seen in Fig. 76 where the blue circle represents the fixation point
and the green cross the cursor moving towards it).

In practice, the eye tracker was often unable to track the user’s eye effectively resulting in either
the cursor freezing in place making the user unable to interact with interfaces or the eye tracker
detected false eye movements and moved onto interactable objects resulting in false interactions.

In order to solve this, we used the Magic Leap Control for two functions. First, the user could
use the onboard trackpad to introduce a small offset from their fixation point by manually moving
the target when the tracking failed. Second, we changed our passive gaze-delay interactions, where
if the cursor remained on top of an interactable object for 1 second it would invoke an interaction,
with an active interaction by pressing a controller button.

Through this change we understood that the eye tracking cursor should have some secondary
form of movement to enhance its accuracy, and gaze-based interactions should be done through a
form of direct interaction instead of happening passively under specific conditions.

For the final implementation, the Glanceable interfaces were unlocked from the user’s field of
view and instead were fixed to the user’s surrounds at a set angle and a set distance. This way
the user can use a combination of eye tracking and head movement to move the gaze-based cursor

66

in relation to the Glanceable interfaces. In addition, the Magic Leap’s eye tracker also detects
whether the user is blinking or not with one value for each eye. Thus, we replaced the clicking of a
button on the controller with the blinking of one eye, which resulted in a direct form of interaction
which only uses the user’s eyes.

Confusing interaction switch between interfaces. As mentioned before, users were shown
how to use gaze-based interactions with a delay for gaze-based interfaces, while the Holo-box used
instantaneous hand-based interactions, which proved to be disorienting.

In order to solve this, for the final implementation both interaction types were combined into
a universal system. Both forms of interaction used separate cursors, one for the eye-gaze and two
for each index finger and an interaction occurred when the user either started blinking with the
eye-gaze cursor on top of an object or when a hand cursor entered an object’s trigger zone. Both
actions performed an interaction with a small delay to minimise misinteractions and hand-based
interactions took priority over gaze-based interactions if both occurred simultaneously to minimise
conflicting cases. As a safety measure, hand-based interactions only work inside the Holo-box
interfaces and not on Glanceable.

SG LOD is underused. The initial concept for the SG interface was to show a generic message
notifying there was a change inside the AR interfaces, which provided no useful information without
opening at least one additional interface.

For the finished implementation this was changed to show an informative message that was
limited to a few words. The message informed the user of a new manufacturing task and included
the name of the product to manufacture and the material to use (e.g. ”12mm cog, copper”).
Additional information on the given task are received through subsequent interfaces, but this
amount of information could be enough to inform an experienced user that has manufactured the
same object before and memorised it.

Additional machine shop information was needed. Even with the proposed 3-LOD
interface system, the information given to the user was only relevant to the dynamic data of the
given task. In the previous work of G-code Machina [2] the users first received a manufacturing
task and then read the relevant documentation to gain additional knowledge required to complete
a mission.

In our work, users did not need to read documentation regarding the G-code, but they had
to find additional objects to complete their given task, such as manufacturing tools. Thus, the
Holo-box was extended to have additional content than included a visualised documentation in
addition to the given mission’s description. This documentation could also include 3D objects
which could be directly compared to their real world equivalents.

67

6 Holo-Box: Multi-LOD Glanceable Interfaces for Machine
Shop Guidance using Blink and Hand Interaction

In this chapter we analyze the final design of our proposed Glanceable interface system Holo box
developed using Unity 2020 and the Magic Leap One AR Head-mounted Display (HMD).
The contribution of this work is threefold:

e Holo-box is a novel, gaze-activated 3-LOD system that initially launches with a compact
interface and progressively expands to reveal more information with each LOD. Two initial
LOD interfaces are controlled through glance (Glanceable interfaces), while the deepest level
of LOD is a 3D world-based interface. The interface enables the user to view simple guidance
information through the Glanceable interfaces or select to view the 3D interface to examine
more detailed information.

e Holo-box utilises a new interaction system that utilizes a combination of eye-gaze blinking
with a delay (dubbed blink-delay) for interacting with Glanceable interfaces to minimize
unintended interactions. Objects remain selected and interactable even if the eye cursor exits
their activation trigger unless another interactable object is selected. Glanceable interfaces
are also visually adjusted to minimize errors in interaction, deliberately placing buttons
on opposite sides of the interface. The 3D interfaces also allow hand tracking interactions
with a delay (dubbed hand-delay). Users can engage interchangeably between hand-delay
and blink-delay interactions; thus, interactable objects can be placed on any layout without
restrictions.

e The content shown in each LOD is adjusted so that each interface can be used to guide users
with different levels of knowledge on its own. In the most compact Glanceable interface, we
show only textual information, including the name and material of a given task. The second
LOD level of the Glanceable interface offers additional text and 2D images. The subsequent
3D interface includes 3D objects and multiple interactable buttons. The Glanceable interfaces
provide adequate guidance for experienced users, while the 3D interface provides additional
information for inexperienced users, using 3D models relevant, in our case, to manufacturing
tasks.

We evaluate Holo-box by employing an object selection task in a pilot manufacturing scenario.
The content displayed on all interfaces is used in presenting milling and turning manufacturing
tasks in the form of gamified missions. Experiment results show that users complete missions faster
and use more compact interfaces as they gain more experience. Our proposed interaction system
compensates for the eye tracker’s inaccuracies resulting in higher perceived accuracy on blink-delay
inputs than hand-delay.

The implementation can be separated into three chapters: (1) The interface design, (2) User
interactions, and finally, (3) Adapting the content of the interfaces to take full advantage of the
designed interface system.

Our proposed design aims to achieve three primary design goals (DG) that include:

e (DG1) The system must be usable while working on a real world task while minimizing
potential safety risks, improving on information retrieval and safety practices of previous
work in AR guidance in the manufacturing workspace [068].

e (DG2) The interface must be able to show varying amounts of information in different LODs
based on whether the user’s focus is on the real world or the virtual content. The user’s focus
is governed by direct interactions with virtual objects instead of automatically [17], reducing
potential distractions from shifting interfaces while the user’s focus is on a real-world task.

e (DG3) The interfaces should achieve accurate interactions and the Midas Touch problem
should be minimized when using gaze interaction. To mitigate the impact of the Midas touch
problem, a direct form of interaction, such as blinking, is preferred[73]. In dense interfaces
where interactable objects are prone to overlap [71], a different interaction paradigm should
be used such as hand-tracking. Speech control is not appropriate due to the noisy nature of
the manufacturing workspace.

68

6.1 Interface design

=l = e
=E = e

Mission Details
VES OIS — Shbject Size: 150x100 mm
T P —— Material: Aluminum
Object Size: 150x100 mm Carving Depth: 5mm
Material: Aluminum Manufacturing Tool: Tuberous
Tool ®10

NewmissionmERl VRS Carving Depth: 5mm

= £ Manufacturing Tool: Tuberous
"A" Plaque, Aluminum B8 Tool d10

Figure 79: Holo box. 3-LOD interface design. Level 1: Simple Glanceable - SG (Left), Level 2:
Detailed Glanceable - DG (Middle), Level 3: Holo-Box - HB (Right)

Holo-box employs the same 3-LODs (e.g. Simple Glanceable (SG), Detailed Glanceable (DG) and
Holo-Box (HB). See Fig. 79) mentioned in the prototype design, but the usability of each interface
has changed to adapt to the issues and limitations mentioned in the previous chapter as well as
the Design Goals mentioned in this chapter.

SG and DG are 2D display-fixed Glanceable interfaces that follow the user’s head orientation
and are always visible. HB is a 3D interactive interface which remains fixed at a predefined anchor
location in the real world chosen by the user. The usability of each interface is as follows:

Simple Glanceable (SG): (Figure 79 left) The SG interface is a compact 2D interface that
shows minimal information limited to a few words. SG minimizes real-world occlusion and is the
first interface encountered to notify the user new data is present in the virtual interfaces. The SG
interfaces include an interactable button that transitions to the DG interface.

Detailed Glanceable (DG): (Figure 79 middle) The DG interface provides more detailed
information to the user, including a few lines of text as well as 2D media such as images. DG is
larger than the SG interface, but it is still relatively small compared to the Magic Leap’s FoV to
not impede a large area of the available FOV. DG includes two interactable buttons, one to return
to the SG and another that transitions to the HB. Locating the two buttons far from each other
minimizes potential unintentional interactions.

Holo-Box (HB): (Figure 79 right) The HB interface is a 3D interface that appears in the
real world. During the application setup process, the user manually places the HB on the real
world, designated as a semi-transparent bounding box. Its position persists during the execution
of the application or until the user manually repositions it. Upon HB activation through the DG
interface, the content appears inside the predetermined position regardless of the user’s position
during the activation. The content of the HB includes complex 2D interfaces, 3D objects and any
number of interactable objects. HB also allows for both blink-delay and hand-delay interactions;
these can activate interchangeably.

The two Glanceable interfaces allow for rapid information retrieval ”at a glance” with two levels
of information. SG is compact, allowing for easier focus on the real world providing guidance, while
DG triggers after the user interacts with the SG interface. Thus, we can assume the user wants to
focus on the virtual content when the DG interface appears. SG and DG interfaces follow the user
at a set distance and viewing angle as they move around the real world. On the other hand, HB
is anchored on a specific real-world position and does not move. HB content is presented only on
the inside of its bounding box. We assume that the user has placed it appropriately at a position
where they can use hand tracking without risk of injury. This design fulfills DG1 and DG2.

69

6.2 User Interactions

Welcome to Holo-Box!

Look towards the button below.
When a yellow outline appears close one eye
to click the button.

Welcome to Holo-Box!

Look towards the button below.
When a yellow outline appears close one eye
10.CHEICAHNE DIION :oestmnscmcmmms. .) e TS s e

) R\ V. SR

R e

(a)

Figure 80: Eye tracking interaction. When one eye is closed the cursor turns blue and initiates the
click.

Holo Box allows for two types of interaction, one that uses eye tracking (see Fig. 80) and one
that uses hand tracking (see Fig. 81). Both interaction types are designed around using delay-
based inputs, where the user targets an object using a cursor and remains on the target for a
set amount of time before the interaction happens. To reduce gaze mis-interactions, the user
must place the eye-tracking cursor and then blink with one eye to interact, thus, using ”Blink-
Delay” interactions.Hand tracking interactions on the other hand use different cursors which are
placed on the users’ index fingers on both hands.The user interacts with objects by positioning
their fingers in a trigger zone which extends a few centimeters around the interactable object and
remain inside the trigger for the same delay period for a ”Hand-Delay” input. To avoid conflicting
simultaneous interactions, hand tracking is prioritized over eye-tracking interaction. If both hands
engage simultaneously, then the left-hand cursor is prioritized.

&
‘H‘

-\

e
B

‘

Figure 81: Right hand cursor (purple circle). The user’s hand appears to the right of the cursor
due to the Magic Leap camera’s recording perspective.

Interactable objects in Holo-box operate using a universal state machine. An interactable object
can be at one of three states: Idle, Highlighted or Clicked (see Fig. 82). Initially, all objects are
in an idle state, showing their basic visuals. When a cursor enters the object’s trigger zone, that
object becomes highlighted, enabling an additional visual effect to show the transition. After a
click is initiated by blinking on a Blink-Delayed input or immediately when highlighted on Hand-
Delay inputs, a progressively filling visual effect is presented, showing the progress towards the
interaction completion. After the delay period has passed, the click effect is triggered and the
object returns to an idle state.

70

Idle Highlighted Clicked

Figure 82: Button States

In Holo-box, to fulfill DG3, only one object can be at the highlighted and clicked states at all
times shared across all interaction types. The highlighted object is deselected only after a click,
or another object becomes highlighted and not when the user exits the trigger zone. When using
Hand-Delay, the object changes from clicked to highlighted on exit. This way the user can select
an object and even if their cursor moves outside the trigger zone due to tracking errors, the delayed
click can still be performed by blinking if the cursor does not select a different object.

To fulfill design goal DG1, Hand-Delay interactions are disabled on the SG and DG interfaces,
as these interfaces move and may be placed in a dangerous location for hand motions. Based on
the design,the SG and DG interfaces are designed to minimize misinteractions. SG only comprises
a single interactable button. DG includes two buttons placed on the top and bottom edges of the
interface to reduce misinteractions when using Blink-Delay inputs. HB allows for both Hand-Delay
and Blink-Delay inputs. As such, there are no restrictions on the amount of interactable objects
as long as they are placed so that their trigger zones are not overlapping.

6.3 Machine shop Content Adaptation

A set of Glanceable interfaces were designed for this work, including information guiding the user
to perform the experimental procedure. In the experiment, the users are given a set of instructions
and they are tasked with selecting the correct object corresponding to a manufacturing task,
including a cutting tool, a cutting material and a manufactured product.

For the Glanceable interfaces, each manufacturing task is presented in the form of a gamified
“mission” [2]. A mission consists of a set of information required to perform a manufacturing task
setup. This consists of which tool and material to use, a 2D blueprint of the finished product
and numerical cutting parameters such as the cutting speed. Each mission has a predefined tool,
finished product and manufacturing parameters, but the material can vary.

Mission Details

Object Size: 150x100 mm
Material: Aluminum

Carving Depth: 5mm
Manufacturing Tool: Tuberous
Tool ®10

Figure 83: The Holo-box interface mission description.

The presentation of the missions is adapted to allow efficient guidance with any of the three
interfaces according to the user’s expertise. The HB interface contains the information required
to complete any mission. This includes mission information (see Fig. 83) as well as tool (see Fig.
84a) and material (see Fig. 84b) look-up tables with added 3D objects for better visualisation.
The 3D models of the tools and materials use a modified version of the interaction logic that shows
the object’s name above the model when highlighted.

71

Material Details

=N

Tool Details
“Tuberous Tool
-Cartilage Tool
-Completion Tool
-Cutting Tool

&b

(a) (b)

Figure 84: Holo-Box interfaces. (a) Tools database, (b) Materials Database

The DG interface includes mission-specific information in a 2D interface (see Fig. 85b). The
SG interface only contains the name of the mission as well as the correct material (see Fig. 85a).
The SG interface is adequate for experienced users who have already completed a given mission
and memorized it. To make the SG interface more efficient, each mission was given a different
name, e.g., the ” A plaque” corresponds to cutting the letter ”A” on a square block.

Mission Details (=)
Object Sizep450x100 mm
Material: Copper——

New Mission =
et

(a)

Figure 85: Simple Glanceable and Detailed Glanceable interfaces

6.4 Evaluation interface

The Evaluation Interface (EI) used in the evaluation is a modified version of the HB with the same
functionality. This interface includes 2D interfaces with buttons used to operate the evaluation
procedure, e.g., starting the evaluation or moving to the next mission providing feedback to the
user (Figure 86). In addition, the interface includes 3D models of all available machining tools,
materials and finished products which the user can select by interacting with them to complete a
given training mission.

72

p—

Reposition Tabletop Mission Geneiawwv
Select the correct 3D tool,
hed product.

Repos'\tion HoloboX

material and finis

/Solve Mission
Abandon Mission

—ar

Fi :
gure 86: Evaluation Interface

73

7 Low level Unity Implementation
In this chapter we will analyze the implementation of our work at a low level. Our implementation

was done exclusively through Unity, which was linked with Magic Leap’s ”The Lab” application
for zero iteration debugging and a single click build and install.

7.1 Scene Hierarchy

= Hierarchy

+ -

< Glanceable*

Figure 87: The implementation’s scene hierarchy

Our implementation was done in a single virtual scene, dubbed Glanceable (see Fig. 87) as an
internal name. The game objects inside our scene can be categorised in four categories:

e Magic Leap Template objects. These are standard pre-made object prefabs included in the
Magic Leap Unity Template, which link our project with the Magic Leap One hardware
appropriately.

e Unity standard objects. These are standard Unity objects present in any scene.

e The Game master. This game object holds the core logic of our work including global
parameters and calls from and to other scripts.

e Holo-Box’s game objects. These objects and their logic were fully implemented during this
work and represent actual virtual objects inside the scene.

74

7.1.1 Magic Leap Template objects

¥ Main Camera (1)
Layer Default
Open

Transform

v Camera

+~ Magic Leap Camera

Audio Listener

& v Flare Layer

+ MLSceneOptimizerBehavior

Add Component

Figure 88: The Main Camera Object’s inspector

Main Camera (see Fig. 88). The Main camera represents the user’s eyes into the virtual scene.
Through the Magic Leap Camera, MLSceneOptimizerBehavior and Tracked Pose Driver compo-
nents the game object tracks the physical hardware and adapts virtual content as the user moves
around the virtual scene to keep the real and virtual worlds aligned at all times.

75

Add Component

Figure 89: The ML Spatial Mapper Object’s inspector

ML Spatial Mapper (see Fig. 89). This object is responsible for scanning the mesh of the
real world and then creates a collection of polygonal meshes inside the virtual scene. These meshes
allow us to visualise the scanned real world’s shape and add occlusion and collision to these objects
if necessary. The visuals and behavior of the scanned mesh objects are based on the Mesh Prefab
field which specifies the game object to use as a template.

76

Original
Untagged Layer World

shOcclusion

Blend Pro
Elend Pro

MNone (

Per Object Motion

H

Add Component

Figure 90: The ML Spatial Mapper’s Mesh Template Object’s inspector

The Mesh template object is provided by default along the Spatial mapper (see Fig. 90). By
default, the mesh’s objects are visualised as a multi-colored mesh visible to the users. In our
case, we switched the default Wireframe material with the HandMeshOcclusion one, which has no
visuals on its own, but occludes other objects behind it. This way, if a virtual interface intersects
with a real object it will be partially occluded.

The object’s mesh collider also allows our objects to be included in physics calculations, which
in our case is necessary for the eye tracking, as the eye tracker calculates the user’s fixation point
by raycasting from the user’s eyes towards the virtual world until it collides with a virtual object.

7

Open
Transform
Position X 0.085441 Y -0.10
Rotation X0 YO
1 ¥ 1

+ Controller Transform (Script)

Controller Status (Script)

« Controller Holobox (Script)

Figure 91: The Controller Object’s inspector

Controller (see Fig. 91). The Controller is responsible for both tracking and visualising the
Magic Leap Control. The Controller Visualiser script is responsible for visualising the controller as
a virtual object inside the scene. The Controller Transform, Controller Status and ML Controller-
ConnectionHandlerBehavior are responsible for tracking the controller’s position. The Controller
Holobox script allows us to read and use controller inputs in our application.

78

CheckTrigger();

3uttonDown (byte controllerId, MLInput.Controller.Button button)

if(button == MLInput.C 1ler.Button.Bumper)

F {5 a'..'-'r'IHIZ:ll::l:u:i::(:l

if (SpawnTabletop)

> @.5T)

Figure 92: The Controller Holobox script

The Controller Holobox script contains two key functions. The Check Trigger function is called
on every frame and checks how far the trigger is pressed (0 = not pressed, 1 = fully pressed).
If more than half the trigger is pressed, we rotate the Capsule Canvas which holds the Glance-
able interfaces to match the user’s forward angle. This way, if the user presses the trigger and
then rotates their head they can reposition the Glanceable interfaces to their desired angle. The
button and trigger values are received through the ML Controller. Controller class included in the
UnityEngine. XR. MagicLeap package.

The On Button Down function is a callback method which is automatically executed by Unity
every time a button press is detected from any input (including keyboard, mouse and all types of
controllers when available). In our case, we only detect if the Magic Leap Control’s bumper was
pressed. The only times when we want to use this button are when we want to spawn the Evaluation
Interface and the Holo-box, indicated by the SpawnHolobox and SpawnTabletop booleans.

In both cases, we Instantiate a new Game Object either of type HoloBoxPrefab or Tabletop-
Prefab, both of which are initialized inside the GlanceableLogic script, which is a class of type
GlanceableUILogic stored onto our GlanceableCanvas Game Object. The object is instantiated
with the same position and rotation as the Magic Leap Control. Finally, the Glanceable logic’s
reference to the newly spawned object is updated, deleting a previous instance of the same interface
if it existed previously and keeping the last one.

79

7.1.2 Unity Standard objects

® |ighting

Indirect Multiplie

soft Shadows

Quality Settings

None (Flare)
Auto

Everything

Add Component

Figure 93: The Directional Light Object’s inspector

Directional Light (see Fig. 93). The Directional light object provides a universal ambient
lighting to all objects in the scene. This light simulates natural sunlight that lights every object in
the scene from a set angle (identified by its rotation). In a standard 3D scene, this light would cast
shadows after it collides with 3D objects and indirect light bounces would light up occluded areas
with smaller intensity like the real world. In AR however, this process does not work as intended,
as Magic Leap denotes lower intensity as object transparency, resulting in objects appearing fully
visible on one side and transparent on the other side. To solve this, we added two Directional
lights with different angles of rotation (X rot = 0° for the first and X rot = 180° for the second)
and different intensity values (2 for the first and 1 for the second).

80

Add Component

Figure 94: The Event System Object’s inspector

Event System (see Fig. 94). Unity’s event system is responsible for reading inputs and calling
the appropriate functions in all available scripts such as the OnButtonDown function inside the
Controller Holobox script as well as calling the OnClick functions on every Game Object with the
Button component, which is used by all interactable objects inside Holo-box.

7.1.3 Game Master

Default

1

Figure 95: The Game Master Object’s inspector

The Game master is an empty Game Object with no visual or functional components (see Fig. 95)
that holds the Game Master script.

81

Glanceablelogic;
ctedButton;

vold SwitchSelectedButton(juttonUI newButton)

if (newButton == SelectedButton)

returny

ctedButton !=

SelectedButton.Des

SelectedButtor

Figure 96: The Game Master script

The Game master script holds a static reference to itself, making sure On Awake that this
script’s instance is unique. Any other script can access its public parameters through this instance
using the GameMaster.instance.parameter or GameMaster.instance.function() format.

The Game master serves two functions. First, it holds public references to other objects and
scripts which need to be accessed by other scripts easily as well as globally available values (Eye-
FizationPoint). Second, it manages the object selection logic, making sure only one object is
selected at any given moment, stored in the SelectedButton parameter, and if the selected object
was selected through the hand or eye cursor, stored in the isHandTriggered boolean parameter.

82

7.1.4 Holo-Box Game Objects

The Game objects we designed for Holo-box outside the Game Master fall into one of three cate-
gories:

e Cursors and their movement managers
e Interfaces with their Interface Logic
e Interface components

In the following chapters we will analyze the most important objects and scripts used by these
objects.

® |ighting

t

¥ Canvas

i

" Canvas Scaler

t+

sraphic Raycaster

0

+ MLHeadposeCanvasBehavior

Add Component

Figure 97: The Fixed Canvas Object’s inspector

Fixed Canvas (see Fig. 97). The fixed canvas is a 2D panel that follows the user’s viewpoint
at a fixed distance using the MLHeadposeCanvasBehavior script provided by Magic leap. This
script provides a smooth movement and the canvas’s distance from the user can be adjusted using
the Canwvas Distance Forward parameter. As the Magic leap has a minimum draw distance of 0.37
meters in front of the user, we set this canvas’s distance at a distance of 0.5 meters.

In the prototype implementation, this canvas held the Glanceable interfaces in addition to the
eye tracking cursors, but in the final implementation it only holds the eye tracking cursors, which
should always be visible in front of the user.

The fixed canvas has two children Game Objects (see Fig. 87) including the Cursor and the
ChaseCursor in addition to the WorldCursor which is used for the same logic. The Cursor game
object is a visual indicator that shows the realtime positon of the user’s eye tracking position
onto the Fixed Canvas. The ChaseCursor is a green cross cursor that follows the Cursor in a
smooth motion along the Fixed Canvas. The WorldCursor is an invisible cursor that goes behind
the ChaseCursor and collides with 3D objects behind it, activating the triggers of interactable
objects selecting them. The Cursor and ChaseCursor objects are purely visual indicators while
the WorldCursor has a Spherical collider with a radius of 1 millimeter.

83

sor.trans

.red);:

.white);

Figure 98: The Eye Tracking Manager script

Eye tracking interactions are achieved through the Eye Tracking Manager script (see Fig.
98) which is placed on the Cursor Object. The eye tracker’s fixation point is defined through the

84

ML FEyes class included in the UnityEngine. XR.MagicLeap package using the ML FEyes. FizationPoint
parameter (line 40).

The script executes a process on every frame inside the Update function. First, we position an
EztraCursor object on the MainCamera’s position (line 34) and rotate the ExtraCursor to look
towards the eye tracker’s fixation point (line 42). Then we perform a raycast from the EztraCursor’s
forward vector which collides only with objects in the ?UI” layer (line 36,38) which only includes
the Fized Canvas object and then reposition the Cursor object on the position the ray hit the
Fized Canvas.

Next, we perform a second raycast and this time the EztraCursor is looking towards the
ChaseCursor which collides with objects inside the ” World UT” layer which includes the Glanceable,
Tutorial, Holo-box and Evaluation Interfaces and positions the World cursor on the hit position
(lines 50-60).

Finally, at the end of the frame, we check the MLEyes. Left. Eye.IsBlinking and the ML Eyes. RightEye.IsBlinking
parameters and if the user is blinking with one of their eyes and the user has not selected an ob-
ject with their hands then a DelayedClick is executed. Similarly, if the user was performing a
DelayedClick using their eyes and they stop blinking the click is topped with the DelayedClickStop
function (lines 62-89).

TargetObject.trans

Figure 99: The Chase Cursor Manager script

The ChaseCursor handles its own movement through a simple generic script (see Fig. 99)
which sets a speed value and a target and then moves towards the target at every frame.

85

ght.Inde y 2].Position;
tion = RightIndexP

Figure 100: The Hand Cursor Manager script

Hand Cursor Manager (see Fig. 100). The Hand cursors consist of two Game Objects
visualised as two small purple spheres (see Fig. 81) which follow the user’s index fingers. The
spherers have a radius of 0.5 millimeters, which is approximately the same size as the index finger’s
nail.

The Hand Cursor Manager script uses the MLHandTracking class from the UnityEngine. XR. MagicLeap
package to receive tracking data from the Magic Leap’s hand tracker. On every frame through the
Update function the script checks if either hand is visible through the MLHandTracking. Left.Is Visible
and MLHandTracking. Right.IsVisible parameters and if either hand is visible its cursor is en-
abled and positioned on the position where the index finger is tracked through the MLHand-

86

Tracking. Left. KeyPoints[2]. Position and MLHandTracking. Right. KeyPoints[2]. Position parame-
ters. Magic leap Tracks 15 key points for every hand and KeyPoints[2] indicates the key point at
the edge of the index finger. As an alternative, we also used KeyPoints/0] which is on the center
of the palm which was easier to track but interactions with this point felt unnatural.

Collaborate

~* Layer WorldUl

] ---UNITY---

Add Component

Figure 101: The Capsule Canvas in the Scene (left), Hierarchy (middle) and Inspector (right)

Capsule Canvas (see Fig. 101). The capsule canvas is a combination of two Game objects
including the parent CapsuleCanvas which is a cylinder centered around the Main Camera and a
2D Glanceable canvas which rotates around the capsule’s center along it’s surface.

87

transform.position = CapsuleCenter.transform.

GraphicsAngle
ResetGraphic

Figure 102: The Capsule Canvas Movement script

The Capsule Canvas Movement script (see Fig. 102) contains functions that set the orientation
and position of Glanceable interfaces. On every frame through the Update function, the capsule is
set to follow the position of its CapsuleCenter parameter, which is set to be the position of the Main
Camera (see Fig. 101). The SetGraphicsAngle function is called from the Controller Holobox script
to adjust the rotation of the capsule canvas during runtime. Similarly, the SetGraphicsDistance
function can be used to adjust the radius of the capsule canvas, moving the Glanceable canvas
closer or further from the user.

88

Waorld Ul

Rect Transform

Canvas
Canvas Scaler
¢ Graphic Raycaster

Glanceable Ul Logic (Seript)

Add Component

Figure 103: The Glanceable Canvas Object’s inspector

The Glanceable Canvas contains all 2D Glanceable interfaces including the Glanceable (Simple
Glanceable interface), Details (Detailed Glanceable interface) and four Tutorial interfaces (see Fig.
101) In addition, the Glanceable Canvas has two scripts, the Glanceable UI Logic for managing
the Glanceable interfaces and the Tutorial UI Logic script for managing the Tutorial interfaces.

89

in Tutorials

Contro ;
Table X u riginalTe

CDHtFDl.SF 1Y C ~
HoloboxText.tex oloboxOriginalText;

Figure 104: The Tutorial UI Logic script. Initial tutorial execution

The Tutorial UI Logic is executed when the application starts through the Start function (see
Fig. 104). On start, the logic shows the first tutorial interface which shows the first Tutorial
interface. Fach Tutorial interface includes a button with a script that is responsible for increasing
the Tutoriallndex and calling ShowTutorial again.

90

f.: :| .HoloBox == null :|

Holo OriginalText + "\n" + SpawnErrorMsg;

.SpawnHolo

if (IsFirstTimeTutorial)
1
IsFirstTimeTutorial = fal

1
I

ShowTutoria

wnTabletop()
Object.GetComponent l leu ic»().Tabletop ==

TabletopOriginalText + "\n SpawnErre

Control.SpawnTabletop = false;

if (IsFirstTimeTutorial)

ShowTutorial(4);

ShowTutorial(e);

Figure 105: The Tutorial UI Logic script. Reposition interfaces

The third and fourth Tutorial Interfaces are responsible for spawning the Fvaluation Inter-
face and Holo-Box interface objects. Thus, when their buttons are pressed, they call the Disa-
bleSpawnTabletop and DisableSpawnHolobox functions accordingly (see Fig. 105). These functions
check if the appropriate interface was spawned and then proceed to the next tutorial step. The
Tutoriallnder is also used as an indicator on the Controller Holobox script to determine which
interface to spawn when the Magic Leap Control bumper is clicker. Additionally, the Glanceable,
evaluation and Holo-box interfaces are disabled as long as the Tutoriallndex is not zero.

These interfaces may also be activated again through the Fuvaluation Interface after the tutorial
is completed in order to reposition the Ewvaluaiton Interface or Holo-Box interface. In this case,
the tutorials will not be executed sequentially and instead after one tutorial step the Tutoriallndex
will be reset to zero indicating no Tutorial interface is enabled.

91

ctop;
t TabletopPrefab;

ble();

vid EnableSimpleGlanceable()

oid EnableDetailedGlanceable()

2id EnableHoloBox()

1 DisableAllGlanceable()

Figure 106: The Glanceable UI Logic script

The Glanceable UI Logic script handles all logic regarding enabling and disabling the Glanceable
and Holo-box interfaces. At the start of the application’s execution through the Start function, all
three interfaces are disabled.

When the Magic Leap’s Control’s bumper is pressed through the Controller Holobox script the
appropriate interface is instantiated and then the SetHoloBoz or SetTabletop functions are called,
destroying the previous instance of the object, if any, and then setting the HoloBox or Tabletop
parameters to the new object.

The EnableSimpleGlanceable, EnableDetailedGlanceable and EnableHoloBox functions enable
the appropriate interface while disabling the other two. These functions also set the objects and
values that appear in each interface according to the selected mission’s parameters including setting
texts, the 2D image of the Detailed Glanceable interface and the 3D model of the Holo-box’s finished
product.

These three functions are called at the following times:

e EnableSimpleGlanceable: When a new mission is activated through the Evaluation Box Logic.
When the Holo-box interface is closed using the ”X” button.

e FEnableDetailedGlanceable When the ”eye” button on the Simple Glanceable interface is
pressed.

e FEnableHoloBor When the ”eye” button on the Detailed Glanceable interface is pressed.

92

Context: No Gray Hidden

v Gizmos ¥

* Layer World Ul

+ Holo Box Logic (Script)

ion Tz

Add Component

Figure 107: The Holo-Box Interface in the Scene (left) and Inspector (right)

Holo-Box Interface (see Fig. 107). The Holo-box holds multiple 2D and 3D objects which
includes the following:

Floor panel. This is indicated by a wireframe pattern at the bottom of the Holo-box

Transparent box. This is the blue box which indicates the perimeter inside which virtual
content will appear. The box is always visible at 95% transparency making it visible without
occluding its contents.

Back Panel. The back panel consists of two parts. On the top of the panel are four inter-
actable buttons. The first three cycle between the three ”tabs” of the Holo-Box interface
including the Mission Tab (see Fig. 83), Tool Tab (see Fig. 84a) and Materials Tab (see
Fig. 84a) with the fourth button closing the Holo-Box interface and returning to the Simple
Glanceable. Below the buttons is a description whose content changes based on which tab is
enabled.

3D tools. Five tools are placed inside the Holo-box, which are shown when the Tool Tab is
enabled. Each tool includes a 3D text with its name which is placed above the 3D model
and is shown when the tool is selected using eye or hand cursors.

3D Materials. Four Rectangular blocks indicated four different materials are placed inside
the Holo-box, which are shown when the Material Tab is enabled. Each material includes a
3D text with its name which is placed above the 3D model and is shown when the material
is selected using eye or hand cursors.

3D Finished Mission Product. Unlike the Tools and materials, which were manually placed
so that their colliders don’t overlap, Holo-box includes an array of references to all finished
products inside the MissionObjects list. When the Mission Tab is shown, the appropriate
finished product is instantiated during runtime.

93

Figure 108: The Holobox UI Logic script

Initially, the Holo-box is enabled when it is spawned during the Tutorial. During that time,
all the objects except the Floor panel and Transparent box are disabled. When the ”eye” button
of the Detailed Glanceable interface is pressed the content of the Holo-box is enabled, showing
the Mission Tab (see Fig. 108) on the OnEnable function. The buttons that change the active
tab execute the SwitchTab function with the appropriate parameter. If the Holo-box’s ”X” button
is pressed, all tabs are disabled and the CloseHoloBoz function is called, enabling the Simple
Glanceable interface. When a new mission is given to the user, the Init function is called setting
the content of the Mission Tab accordingly.

® |ighting Collaborate

+ Ewaluation Box Logic (Script)

Reposition Tabletop |
Reposition Holobox |

! Fitll Experiment

& d

f . State Inactive
., 1 je ctions
e
|

Figure 109: The Evaluation Interface in the Scene (left) and Inspector (right)

94

Evaluation Interface (see Fig. 109). The evaluation interface holds all the logic used for the
execution of the user study outside the core logic of our proposed interface system.
The prefab of the Evaluation Interface includes the following Game Objects:

e Floor panel. This is indicated by a wireframe pattern at the bottom of the interface.

e Transparent box. This is the blue box which indicates the perimeter inside which virtual
content will appear. The box is always visible at 95% transparency making it visible without
occluding its contents.

e Left Back Panel. The Left back panel includes four buttons. The first two buttons include
the Reposition Tabletop and Reposition Holobox buttons, which execute the appropriate logic
from the Tutorial UI Logic and reposition one of the 3D interfaces. The last two buttons
include the Demo Mission and Full Experiment buttons. The Demo Mission button gener-
ates a single mission, which can be abandoned at any time and if it is solved or abandoned it
returns the Evaluation interface it its default state. The Full ezperiment on the other hand
generates 10 missions, which are given to the user back to back and cannot be abandoned
and when all 10 missions are completed the Evaluation interface returns to its default state.

e Right Back panel. The second back panel handles the per-mission execution. By default it
includes a text stating that ”"No mission is active”. If the user receives a Demo Mission,
two buttons are added to the interface, one to Solve Mission and one to Abandon mission.
Similarly, if the Full FExperiment is pressed, only the Solve mission button is shown. When
the Solve mission button is pressed, the Evaluation interface checks whether the use has
selected the appropriate 3D objects and completes the mission if successful or provides textual
feedback above the buttons if the user made an error.

e 3D tools. Five tools are placed inside the interface, which are shown when a mission is active.
Each tool includes an interaction collider and two visual indicators above it, one circularly
loading indicator showing that a Delayed Click is being executed to select the object and a
green arrow to indicate which tool is selected, if any.

e 3D Materials. Four Rectangular or cylindrical objects that indicate four different materials
are placed inside the interface, which are shown when a mission is active. The rectangular
materials are shown for milling missions that use a rectangular stock material and the cylin-
drical models are used for turning missions. Each of the four materials is identified by its
color and the same four colors are used in both cases. Each material includes an interaction
collider and two visual indicators above it, one circularly loading indicator showing that a
Delayed Click is being executed to select the object and a green arrow to indicate which
material is selected, if any.

e 3D Finished product. Four Rectangular or cylindrical objects that indicate eight different
Finished products are placed inside the interface, which are shown when a mission is active.
The rectangular Finished products are shown for milling missions that use a rectangular stock
material and the cylindrical models are used for turning missions. Each Finished product
includes an interaction collider and two visual indicators above it, one circularly loading
indicator showing that a Delayed Click is being executed to select the object and a green
arrow to indicate which Finished product is selected, if any.

The Evaluation interface includes the FvaluationBoxLogic script that holds multiple variables
separated into the following categories (see Fig. 109):

e Interface Groups. This includes references to all the objects ore sets of objects included in
the interface.

e Scriptable Data. This includes two arrays of Scriptable Data objects, with each one holding
all of the necessary information for each available mission. These are separated into Demo
Missions and Evaluation Missions with three demo and four evaluation missions available.

e Variable Data. These include parameters which are used during runtime. These include the
Active mission which is currently being executed and the Tabletop State enumeration which
defines what objects are enabled inside the Evaluation interface at any moment.

95

e Check solution parameters. These define the text fields which are used to provide feedback
after the Check Solution button is pressed.

e Player Metrics. These parameters include all the metrics that are written in a .CSV file in
sequential format regarding a user’s performance during the Full Fxperiment.

The FvaluationBoxLogic also includes multiple functions that are used during the execution of
the application as follows:

| RepositionTabletop()

HEpDSitiEHHElEh

Figure 110: The Evaluation UI states functions

The TabletopStates enumeration defines the four distinct states the Evaluation interface is in
at any moment. As long as any tutorial interface is active, the Evaluation Interface is in Inactive
state. If no tutorial interfaces are active and there is no active mission, the Evaluation Interface is
in NoMission state. The Evaluation Interface is in the SingleMission state if the Active mission
is a Demo mission or in the FEvaluation state otherwise.

The RepositionTabletop and RepositionHolobox functions are called when the same buttons are
pressed on the Left Back Panel. The ResetTabletop is triggered when the Tabletop State changes
to NoMission.

I NextEvalStep()

] SubmitEval(boc

template, bool

Figure 111: The Evaluation UI mission generator functions

96

The GenerateDemoMission and GenerateEvalMission functions are called when the the
same buttons are pressed on the Left Back Panel. Both of these functions select one Mission
Data Scriptable Object from either the DemoMissionsScriptableData or EvalMissionsScriptable-
Data lists and call the CreateActiveMission function with the correct parameters. Similarly, for
a Full experiment after the first mission is solved, for every subsequent mission the NextFvalStep
function is called which selects the appropriate Mission Data Scriptable Object from the FvalMis-
sionsScriptableData list and calls the CreateActiveMission function with the correct parameters.
The NextFEvalStep function also writes the Player Metrics to a .CSV file and returns the state to
NoMission if the final mission of the evaluation is completed.

n Item Selections

t Object, Toollnc s Index)

Figure 112: The Evaluation UI item selection functions

The SetTool, SetMaterial and SetProduct functions toggle the selection of the appropriate tool,
material or finished product, deselecting the previous one if any and then enabling it’s visual
indicator that it is selected. Similarly, the DeselectTool, DeselectMaterial and DeselectProduct
functions disable the visual indicator that an object is selected and setting the appropriate value
to null. The Deselect functions are called when another object is set or when a mission is solved.

Figure 113: The Evaluation UI mission solution functions

The CheckSolution and AbandonMission functions are called when the the same buttons are
pressed on the Right Back Panel. The Check solution function checks which 3D objects are selected
in the evaluation interface and then writes feedback on the Right Back Panel if the user made an
error, otherwise it records the appropriate data for the mission completion in the Player metrics
and then returns the state to NoMission for a Demo mission or calls the NextFvalStep for a Full
experiment. The Abandon mission on the other hand sets the Active Mission to null and sets the
state to NoMission.

97

Figure 114: The Evaluation UI player metrics tracker functions

The AddError, LogMissionTimer and AddInterfaceSwitch functions are called from the Check-
Solution function to record the three parameters which are recorded separately for every mission.

> LoadResults()

I saveResults()

Figure 115: The Evaluation UI file manager functions

The LoadResults decrypts the results file from the .CSV format into a list of strings for every
line, while the SaveResults takes a list of strings and encrypts it as a .CSV file. These functions
are called on the NextFEvalStep function after all the missions of a Full Experiment are completed.

98

RequiredTs

GetRequiredToolT

Milling
M1

Milling,

%

@ Mo issues found tBundle OnE * MNone =

Figure 116: The Gamified Manufacturing Mission Scriptable Data Script and Inspector

Gamified Manufacturing Mission Scriptable Data (see Fig. 116). The Scriptable Data
class is a special Data holder class type used by Unity. A Scriptable Data class defines a set of
variables, an instance of which can be saved on the project’s files on the disk as a preset set of
values.

Our MissionData class includes all of the required information for any given mission. The
MissionType, BaseMissionIndez, Toollndex and the Material Indezes are defines as enumerations,

99

allowing for specific values, which can be selected through Unity’s inspector as dropdown menus.
Even though the Materiallndezes are defined as an enumeration with four values, each mission
does not have a predefined material, and the requested material is randomly selected out of the
available four every time the GenerateMission function is called.

The tool, material, finished product and mission type enumerations are also used as identifiers of
their 3D models in the Holo-box and Evaluation Interfaces to identify the correct objects to spawn
during their initialization and to check if the correct objects are selected during the CheckSolution
function.

The MissionData class also includes two converters that convert the tool and material enu-
merations into their text, which is then integrated into the 3-LOD interfaces. The RequiredTools
are stored as an array if for an extension of this work a mission with multiple required tools is
presented.

Outside the enumerations, a set of strings are also present including the MissionTitle, ObjectSize
and CarvingDepth which are used on the interfaces as-is. Finally, the scriptable data also includes
a sprite value which holds the 2D image shown in the Detailed Glanceable UI.

100

	Introduction
	Augmented Reality and the Industry 4.0 model
	What is Augmented Reality
	Technologies of AR
	Augmented Reality Head-Mounted Displays (HMDs)
	Microsoft Hololens
	Microsoft Hololens 2
	Magic Leap One
	AR HMD comparison

	Application development in Augmented Reality
	Native platform Development
	Cross-platform development
	Game Engines

	Machine shop manufacturing
	The Industry 4.0 model

	Related Work
	Gamification in training
	System Gamification
	Workplace Gamification
	Adaptive Training Environments
	Realtime prediction and guidance

	Virtual Training Environments
	Virtual Machine Shops
	Virtual Assembly Simulations

	Augmented Reality in workplace guidance
	Augmented Books
	Holographic AR Guidance
	Human-Computer Interaction in AR
	Interactions in AR versus VR
	AR interface types
	Context-aware and adaptive AR
	Glanceable AR and eye tracking

	Machine shop training
	Motivation
	The manufacturing process
	Traditional manufacturing education
	3D CNC Machine shop
	The training procedure
	Evaluation and results

	Holo-Box: Level-of-Detail Glanceable Interfaces for Augmented Reality
	3-LOD architecture
	Machine Shop context
	Issues and limitations

	Holo-Box: Multi-LOD Glanceable Interfaces for Machine Shop Guidance using Blink and Hand Interaction
	Interface design
	User Interactions
	Machine shop Content Adaptation
	Evaluation interface

	Low level Unity Implementation
	Scene Hierarchy
	Magic Leap Template objects
	Unity Standard objects
	Game Master
	Holo-Box Game Objects

	User study
	Apparatus
	Participants
	Procedure
	Demos and Evaluation missions
	Metrics
	Hypotheses
	Results
	Conclusion
	Future work

